# Sample Calculations, Stack Outlet, Method 5B/202, Run 1

# Area of Sample Location

$$A_s = \pi \times \left(\frac{d_s}{2 \times 12}\right)^2$$

$$\left(\frac{408}{2}\right)^2$$

$$A_s = \pi \times \left(\frac{408}{2 \times 12}\right)^2$$

$$A_s = 908 ft^2$$

# where:

= area of sample location (ft²) = diameter of sample location = diameter of sample location (in)  $d_{s}$ 

12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

### **Stack Pressure Absolute**

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 29.56 + \frac{-0.2}{13.6}$$

$$P_a=29.55 in. Hg$$

### where:

 $P_a$ = stack pressure absolute (in. Hg)

= barometric pressure (in. Hg)  $P_b$ 

= static pressure (in.  $H_2O$ )  $P_s$ 

= conversion factor (in. H<sub>2</sub>O/in. Hg) 13.6

# Volume of Dry Gas Collected Corrected to Standard Temperature and Pressure

$$V_{m(std)} = \frac{17.64(V_m)(Y_d)\left(P_b + \frac{\Delta H}{13.6}\right)}{(T_m + 460)}$$

$$V_{m(std)} = \frac{17.64(66.15)(0.9907)\left(29.56 + \frac{1.71}{13.6}\right)}{(104 + 460)}$$

$$V_{m(std)} = 60.85scf$$

#### where:

= volume of gas collected at standard temperature and pressure (scf)  $V_{m(std)}$ = volume of gas sampled at meter conditions (ft<sup>3</sup>)  $V_{m}$ = gas meter correction factor (dimensionless)  $Y_d$ = barometric pressure (in. Hg)  $P_{b}$ = average sample pressure (in. H<sub>2</sub>O) ΔΗ = average gas meter temperature (°F)  $T_{\rm m}$ 13.6 = conversion factor (in. H<sub>2</sub>O/in. Hg) = ratio of standard temperature over standard pressure (°R/in.Hg) 17.64 = conversion (°F to °R) 460

# Volume of Water Vapor Collected Corrected to Standard Temperature and Pressure

$$\begin{aligned} V_{w(std)} &= 0.04715 \times \left( V_{wc} + V_{wsg} \right) \\ V_{w(std)} &= 0.04715 \times \left( 200.5 + 23.5 \right) \\ V_{w(std)} &= 10.56scf \end{aligned}$$

#### where:

 $V_{w(std)}$  = volume of water vapor at standard conditions (scf)

 $V_{wc}$  = weight of liquid collected (g)  $V_{wsg}$  = weight gain of silica gel (g)

0.04715 = volume occupied by one gram of water at standard temperature and

pressure (ft<sup>3</sup>/g)

# Percent Moisture<sup>2</sup>

$$B_{ws} = 100 \times \left[ \frac{V_{w(std)}}{\left(V_{m(std)} + V_{w(std)}\right)} \right]$$

$$= 10.56$$

$$B_{ws} = 100 \times \left[ \frac{10.56}{(60.85 + 10.56)} \right]$$

$$B_{ws} = 14.8\%$$

#### where:

 $B_{ws}$  = moisture content of the gas stream (%)

 $V_{m(std)}$  = volume of gas collected at standard temperature and pressure (scf)

 $V_{w(std)}$  = volume of water vapor at standard conditions (scf)

100 = conversion factor

# Molecular Weight of Dry Gas Stream<sup>3</sup>

$$M_d = \left(44 \times \frac{\%CO_2}{100}\right) + \left(32 \times \frac{\%O_2}{100}\right) + \left(28 \times \frac{(\%N_2)}{100}\right)$$

$$M_d = \left(44 \times \frac{11.9}{100}\right) + \left(32 \times \frac{7.45}{100}\right) + \left(28 \times \frac{(80.7)}{100}\right)$$

$$M_d = 30.20lb/lbmole$$

#### where:

 $M_d$  = molecular weight of the dry gas stream (1b/lb-mole)

%CO<sub>2</sub> = carbon dioxide content of the dry gas stream (%)

= molecular weight of carbon dioxide (lb/lb-mole)

 $\%O_2$  = oxygen content of the dry gas stream (%)

32 = molecular weight of oxygen (lb/lb-mole)

 $\%N_2$  = nitrogen content of the dry gas stream (%)

28 = molecular weight of nitrogen and carbon monoxide (lb/lb-mole)

100 = conversion factor

<sup>2</sup> The moisture saturation point is used for all calculations if it is exceeded by the actual moisture content.

<sup>3</sup> The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

# Molecular Weight of Wet Gas Stream

$$\begin{split} M_{s} &= \left(M_{d} \times \left(1 - \frac{B_{ws}}{100}\right)\right) + \left(18 \times \frac{B_{ws}}{100}\right) \\ M_{s} &= \left(30.20 \times \left(1 - \frac{14.8}{100}\right)\right) + \left(18 \times \frac{14.8}{100}\right) \\ M_{s} &= 28.40 lb / lb mole \end{split}$$

where:

 $M_s$  = molecular weight of the wet gas stream (lb/lb-mole)

 $M_d$  = molecular weight of the dry gas stream (lb/lb-mole)

B<sub>ws</sub> = moisture content of the gas stream (%) 18 = molecular weight of water (lb/lb-mole)

100 = conversion factor

# Velocity of Gas Stream

$$V_{s} = 85.49(C_{p})(\sqrt{\overline{\Delta P}})\sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{b} + \frac{P_{s}}{13.6})}}$$

$$V_{s} = 85.49(0.84)(0.502)\sqrt{\frac{(130 + 460)}{(28.40)(29.56 + \frac{-0.2}{13.6})}}$$

$$V_{\rm s} = 30.2 \, ft / \sec$$

where:

 $V_s$  = average velocity of the gas stream (ft/sec)

C<sub>p</sub> = pitot tube coefficient dimensionless

 $\sqrt{\Delta P}$  = average square root of velocity pressures (in. H<sub>2</sub>O)<sup>1/2</sup>

 $T_s$  = average stack temperature ( ${}^{o}F$ )

M<sub>s</sub> = molecular weight of the wet gas stream (lb/lb-mole)

P<sub>b</sub> = barometric pressure (in. Hg)

 $P_s$  = static pressure of gas stream (in.  $H_2O$ )

85.49 = pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[( ${}^{0}$ R)(in. H<sub>2</sub>O)])  ${}^{1/2}$ 

= conversion ( $^{\circ}$ F to  $^{\circ}$ R)

13.6 = conversion factor (in.  $H_2O/in$ .  $H_3O/in$ .

#### **Volumetric Flow of Gas Stream - Actual Conditions**

$$Q_a = 60(V_s)(A_s)$$

$$Q_a = 60(30.2)(908)$$

$$Q_a = 1,645,795$$
 acfm

where:

 $Q_a$ = volumetric flow rate of the gas stream at actual conditions (acfm)

= volumetric flow rate of the gas stream at a
 = average velocity of the gas stream (ft/sec)
 = area of duct or stack (ft²)

= area of duct or stack (ft<sup>2</sup>)  $A_s$ 

= conversion factor (min/hr) 60

#### Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)\left(P_b + \frac{P_s}{13.6}\right)}{(T_s + 460)}$$

$$Q_{std} = \frac{17.64(1,645,795)\left(29.56 + \frac{-0.2}{13.6}\right)}{(130 + 460)}$$

$$Q_{std} = 1,452,794scfm$$

where:

= volumetric flow rate of the gas stream at standard conditions (scfm) Q<sub>std</sub>

= volumetric flow rate of the gas stream at actual conditions (acfm)  $Q_a$ 

 $T_s$ = average stack temperature (°F)

 $P_b$ = barometric pressure (in. Hg)

= static pressure of gas stream (in. H<sub>2</sub>O)  $P_s$ 

13.6 = conversion factor (in.  $H_2O/in. Hg$ )

17.64 = ratio of standard temperature over standard pressure (°R/in. Hg)

460 = conversion (°F to °R)

# Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left( 1 - \frac{B_{ws}}{100} \right)$$

$$Q_{dstd} = 1,452,794 \left(1 - \frac{14.8}{100}\right)$$

$$Q_{dstd} = 1,238,429 dsc fm$$

#### where:

Q<sub>dstd</sub> = volumetric flow rate of the gas stream at standard conditions, on a dry

basis (dscfm)

Q<sub>std</sub> = volumetric flow rate of the gas stream at standard conditions (scfm)

 $B_{ws}$  = moisture content of the gas stream (%)

100 = conversion factor

### Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$

$$A_n = \pi \times \left(\frac{0.312}{2 \times 12}\right)^2$$

$$A_n = 0.000531 ft^2$$

### where:

 $A_n$  = area of nozzle ( $ft^2$ )

 $d_n$  = diameter of nozzle (in)

12 = conversion factor (in/ft)

2 = conversion factor (diameter to radius)

#### **Percent Isokinetic**

$$I = \frac{0.0945(T_s + 460)(V_{m(std)})}{\left(P_b + \frac{P_s}{13.6}\right)(v_s)(A_n)(\Theta)\left(1 - \frac{B_{ws}}{100}\right)}$$

$$I = \frac{0.0945(130 + 460)(10.56)}{\left(29.56 + \frac{-0.2}{13.6}\right)(30.2)(5.31 \times 10^{-4})(90)\left(1 - \frac{14.8}{100}\right)}$$

$$I = 93.4\%$$

#### where:

= percent isokinetic (%)

 $T_s$  = average stack temperature ( ${}^{o}F$ )

 $V_{m(std)}$  = volume of gas collected at standard temperature and pressure (scf)

P<sub>b</sub> = barometric pressure (in. Hg)

P<sub>s</sub> = static pressure of gas stream (in. H<sub>2</sub>O) V<sub>s</sub> = average velocity of the gas stream (ft/sec)

 $A_n$  = cross sectional area of nozzle ( $ft^2$ )

 $\Theta$  = sample time (min)

B<sub>ws</sub> moisture content of the gas stream (%)

0.0945 = constant ( ${}^{0}$ R/in. Hg) 460 = conversion ( ${}^{0}$ F to  ${}^{0}$ R)

13.6 = conversion factor (in.  $H_2O/in Hg$ )

100 = conversion factor

### Acetone Wash Blank-Particulate

$$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$

$$W_{a} = \frac{(0.0000)(75)}{200}$$

$$W_{a} = 0.0000g$$

#### where:

W<sub>a</sub> = particulate mass in acetone wash, blank corrected (g)

 $m_{ab}$  = mass collected, acetone wash blank (g)

 $v_{aw}$  = volume of acetone wash (ml)

 $v_{awb}$  = volume of acetone wash blank (ml)

# Mass in Front Half, Acetone Blank Corrected

$$m_f = m_{fil} + (m_a - W_a)$$
  
 $m_f = 0.0061 + (0.0085 - 0.0000)$   
 $m_f = 0.0146g$ 

#### where:

m<sub>f</sub> = mass in front half filter, and acetone wash, blank corrected (g)

 $m_{fil}$  = mass in front half filter (g)

 $m_a$  = mass in acetone wash (g)

 $W_a$  = particulate mass in acetone wash blank (g)

#### **Total Particulate Catch**

$$M_n = m_f + m_b$$
  
 $M_n = 0.0146 + 0.0225$   
 $M_n = 0.0371g$ 

#### where:

 $M_n$  = total mass catch (g)

m<sub>f</sub> mass in front half filter, and acetone wash, blank corrected (g)

m<sub>b</sub> = mass in back half organic fraction, and inorganic fraction, blank

corrected (g)

# Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m,std}}$$

$$C_{gr/dscf} = \frac{(0.0371)(15.43)}{60.85}$$

$$C_{gr/dscf} = 0.00941 grains / dscf$$

#### where:

= particulate concentration (grains/dscf)  $C_{gi,dscf}$ 

 $M_n$  = total particulate catch (g)  $V_{m(std)}$  = volume of gas collected at standard conditions (scf)

15.43 = conversion factor (grains/g)

# Calculated F<sub>d</sub> Factor, dscf/mmBtu

$$F_d = K((K_{hd} \times H) + (K_c \times C) + (K_s \times S) + (K_n \times N) - (K_o \times O_2)) / GCV_w$$

$$F_d = 10^6 ((3.64 \times 4.66) + (1.53 \times 74.90) + (0.57 \times 4.14) + (0.14 \times 1.53) - (0.46 \times 7.88)) / 13,234$$

$$F_d = 9,862$$

#### where:

 $\mathbf{F}_{d}$ = calculated fuel factor (dscf/mmBtu)

= conversion factor (Btu/million Btu) K

= constant (scf/lb)  $K_{hd}$ 

= weight percent hydrogen in coal (%)

= constant (scf/lb)  $K_{c}$ 

C = weight percent carbon in coal (%)

= constant (scf/lb)

S = weight percent sulfur in coal (%)

= constant (scf/lb)

= weight percent nitrogen in coal (%)

Ko = constant (scf/lb)

= weight percent oxygen in coal (%)

GCV<sub>w</sub> = gross calorific value of fuel, wet (Btu/lb)

# Total Particulate Emission Rate, lb/mmBtu 4

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$

$$E_{PM} = \frac{(0.0371)(9,862)(20.9)}{(60.85)(453.6)(20.9 - 7.45)}$$

$$E_{PM} = 0.0206lb / mmBtu$$

#### where:

E<sub>PM</sub> = toal particulate matter emission rate, (lb/mmBtu)

M<sub>n</sub> = total particulate catch (g) F<sub>d</sub> = fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $V_{m(std)}$  = volume of gas collected at standard temperature and pressure (scf)

453.6 = conversion factor (g/lb)

 $\%O_2$  = oxygen content of the dry gas stream (%)

### Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m,std})(453.6)}$$

$$E_{lb/hr} = \frac{(0.0371)(1,238,429)(60)}{(60.85)(453.6)}$$

$$E_{lb/hr} = 99.9lb/hr$$

#### where:

 $E_{lb/hr}$  = particulate emission rate (lb/hr)

 $M_n$  = total particulate catch (g)

 $V_{m(std)}$  = volume of gas collected at standard conditions (scf)

Q<sub>dstd</sub> = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

60 = conversion factor (min/hr) 453.6 = conversion factor (g/lb)

<sup>&</sup>lt;sup>4</sup> All particulate emission rates are calculated in a similar manner.

# Sample Calculations, Method 26, Run 1

# Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)<sup>5</sup>

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.59)}$$

$$C_{HCl} = \frac{(0.170)}{(83.97)(10^3)(453.59)}$$

$$C_{HCl} = 4.46 \times 10^{-9} lb / dscf$$

# where:

C<sub>HCl</sub> = concentration of hydrogen chloride in flue gas (lb/dscf)

= mass of hydrogen chloride collected in sample (mg)

 $M_{HCl}$  = mass of hydrogen chloride collected in sample (mg)  $V_{m(std)}$  = volume of gas collected at standard temperature and pressure (scf) = conversion factor (mg/g)

10<sup>3</sup> = conversion factor (mg/g) 453.59 = conversion factor (g/lb)

# Concentration of Hydrogen Chloride in Flue Gas (ppmdv)<sup>5</sup>

$$C_{ppmv} = \frac{(M_{HCl})(385.3)(10^6)}{(MW_{HCl})(V_{m(std)})(10^3)(453.59)}$$

$$C_{ppmv} = \frac{(0.170)(385.3)(10^6)}{(36.458)(83.97)(10^3)(453.59)}$$

$$C_{ppmv} = 0.0472 ppmdv$$

#### where:

C<sub>ppmv</sub> = concentration of hydrogen chloride in flue gas (ppmv) M<sub>HCl</sub> = mass of hydrogen chloride collected in sample (mg)

385.3 == volume occupied by one pound gas at standard conditions

(dscf/lbmole)

 $10^6$  = conversion factor (fraction to ppm)

MW<sub>HCl</sub> = molecular weight of hydrogen chloride (lb/lb-mole)

 $V_{m(std)}$  = volume of gas collected at standard temperature and pressure (scf)

10<sup>3</sup> = conversion factor (mg/g) 453.59 = conversion factor (g/lb)

<sup>&</sup>lt;sup>5</sup> The concentration of HF was calculated in a similar manner.

# Hydrogen Chloride Emission Rate, lb/mmBtu<sup>6</sup>

$$\begin{split} E_{HCI} &= \frac{\left(C_{HCI}\right)\!\left(F_d\right)\!\left(20.9\right)}{\left(20.9 - O_2\right)} \\ E_{HCI} &= \frac{\left(4.46 \times 10^{-9}\right)\!\left(10,000\right)\!\left(20.9\right)}{\left(20.9 - 8.03\right)} \end{split}$$

 $E_{HCl} = 0.0000725 lb / mmBtu$ 

#### where:

E<sub>HCl</sub> = hydrogen chloride emission rate, (lb/mmBtu) C<sub>HCl</sub> = hydrogen chloride concentration, (lb/dscf)

F<sub>d</sub> =fuel factor (dcsf/mmBtu)

20.9 = oxygen content of ambient air (%)

 $\%O_2$  = oxygen content of the dry gas stream (%)

# Hydrogen Chloride Emission Rate<sup>6</sup>

 $E_{HCl} = C_{HCl} \times Q_{dstd} \times 60$ 

 $E_{HCI} = 4.46 \times 10^{-9} \times 1,260,468 \times 60$ 

 $E_{HCI} = 0.338lb/hr$ 

#### where:

E<sub>HCl</sub> = hydrogen chloride emission rate, (lb/hr)

C<sub>ppmdv</sub> = hydrogen chloride concentration, dry basis, (ppmdv)

Q<sub>dstd</sub> = volumetric flow rate of the dry gas stream at standard conditions (dscfm)

MW = molecular weight of hydrogen chloride (lb/lbmole)

= conversion factor (min/hr)

385.3 = volume occupied by one pound gas at standard conditions (dscf/lbmole)

 $10^6$  = conversion factor (fraction to ppm)

<sup>&</sup>lt;sup>6</sup> The emission rate of HF is calculated in a similar manner.

# Sample Calculations, Method 29, Run 1

# Concentration of Lead in Flue Gas, ug/dscm<sup>7</sup>

$$C_{ug/dscm} = \frac{(M_C)}{(V_{m(std)})} (35.31)$$

$$C_{ug/dscm} = \frac{(46.1)}{(80.24)} (35.31)$$

$$C_{ug/dscm} = 20.3ug/dscm$$

where:

 $C_{ug/dscm}$  = concentration of lead in flue gas (ug/dscm)

 $M_{C}$   $V_{m(std)}$ = mass of lead in sample (ug)

= volume of gas collected at standard temperature and pressure(scf)

= conversion factor ( $ft^3/m^3$ ) 35.31

# Emission Rate of Lead in Flue Gas, lb/mmBtu8

$$E = \frac{\left(C_{ug/dscm}\right)\left(F_d\right)(20.9)}{(35.315)(20.9 - \%O_2)(453.6)(10^6)}$$

$$E = \frac{(20.3)(10,000)(20.9)}{(35.315)(20.9 - 8.03)(453.6)(10^6)}$$

$$E = 2.06 \times 10^{-5} \, mg \, / \, dscm (20.7) \%O_2$$

where:

E = lead emission rate (lb/mmBtu) = lead concentration (ug/dscm)

=fuel factor (dcsf/mmBtu)  $F_d$ =conversion factor (ft<sup>3</sup>/m<sup>3</sup>) 35.315

20.9 = oxygen content of ambient air (%)

= oxygen content of the dry gas stream (%) %O2

453.6 = conversion factor (g/lb)  $10^{6}$ = conversion factor (ug/g)

<sup>7</sup> The concentrations of all MHs and mercury are calculated in a similar manner.

The emission rates of all MHs and mercury are calculated in a similar manner.

# Lead Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(C_{ug/dscm})(Q_{dstd})(60)}{(35.31)(10^6)(453.6)}$$

$$E_{lb/hr} = \frac{(20.3)(1,199,916)(60)}{(35.31)(10^3)(10^3)(453.6)}$$

$$E_{lb/hr} = 0.0913lb/hr$$

### where:

 $E_{lb/hr}$  = lead emission rate (lb/hr)  $C_{ug'dscm}$  = lead concentration (ug/dscm)

Q<sub>dstd</sub> = volumetric flow rate of dry gas stream at standard conditions (dscfm)

 $10^3$  = conversion factor (ug/mg)  $10^3$  = conversion factor (mg/g) 35.31 = conversion factor (ft<sup>3</sup>/m<sup>3</sup>) 60.0 = conversion factor (min/hr) 453.59 = conversion factor (g/lb)